Molecular and Quantum Dot Floating Gate Non - Volatile Memories
نویسنده
چکیده
Conventional Flash memory devices face a scaling issue that will impede memory scaling beyond the 50nm node: a reliability issue involving the tunneling oxide thickness and charge retention. A possible solution is to replace the continuous floating gate, where charge is stored, with a segmented charge storage film, so that leakage through defects in the tunneling oxide would be localized. We first explored using quantum dots as possible floating gate replacements. After conducting simulations, we established the need for the smallest possible segmented structures. This led us to the use of molecular films as floating gates in non-volatile flash memories. As an example, a single organic molecule of 3,4,9,10 -parylene tetracarboxylic dianhydride (PTCDA) occupies lnm2 in area and is capable of storing and retaining a single charge. If a defect is present in the tunneling oxide below the floating gate, only a few molecules of PTCDA would be affected due to poor lateral conduction between PTCDA molecules. We can, therefore, project that such molecular thin films of PTCDA are likely to meet demanding size and packing density requirements of advancing flash memory technology. Thesis Supervisor: Vladimir Bulovic Title: Professor
منابع مشابه
Stacked quantum dot transistor and charge- induced confinement enhancement
As the size of a transistor continuously scales down, single electron effects become important [1 – 3]. Previously, we have studied charge transport in single-electron quantum dot transistors which have a channel consisting of a silicon dot separated from the source and the drain by two constrictions [4], and in single-electron MOS memories that have a polysilicon dot floating gate stacked on a...
متن کاملQuantum Dot (QD) gate Si-FETs with Self-Assembled GeOX Cladded Germanium Quantum Dots
This paper presents preliminary data on the transfer and output characteristics of a GeOXcladded Ge quantum dot (QD) gate Si MOSFET. The MOSFET is formed by depositing cladded QDs above the SiO2 gate insulator formed on pSi region, sandwiched between n-type source and drain. Ge (~ 2 to 8 nm) nanoparticles, cladded with GeOX (~1nm) layers, are deposited using site-specific self-assembly. In addi...
متن کاملCharging and Discharging Characteristics of Stacked Floating Gates of Silicon Quantum Dots
Implementation of silicon-quantum-dots (Si-QDs) as a floating gate in metal-oxide-semiconductor field-effect transistors (MOSFETs) has received increasing attention because of its potential advantage for multivalued memories operating reliably even at room temperature and above [1-3]. In this work, we focused on electron storage in Si-QDs stack structures and studied electron charging, discharg...
متن کاملInjector Design for Optimized Tunneling in Standard CMOS Floating-Gate Analog Memories
Programming mechanisms in floating-gate non-volatile (EEPROM) standard-CMOS memories are briefly reviewed. A methodology to optimize the programming time in poly1-poly2 Fowler-Nordheim based structures is proposed. From design constraints, the optimum number of bumps and bootstrap capacitance value are obtained to maximize the programming speed for a given programming voltage.
متن کاملA Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata
The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009